Exercice 1 (7 points) QCM à rendre avec votre copie

A partir des symboles réponse correcte et pour chaque réponse fausse un quart de point est retiré.

Pour chaque question, cocher toutes les réponses correctes. Un quart de point est attribué pour chaque réponse fausse.

1. \(s_1 \) peut être un élément de l’ensemble :
 - \(X \)
 - \(\forall \)
 - \(\exists \)
 - \(
\)
 - \(0 \)
 - \(1 \)
 - \(2 \)
 - \(3 \)
 - \(P \)
 - \(F(X,F,P) \)
2. \(s_2 \) peut être un élément de l’ensemble :
 - \(X \)
 - \(\forall \)
 - \(\exists \)
 - \(
\)
 - \(0 \)
 - \(1 \)
 - \(2 \)
 - \(3 \)
 - \(P \)
 - \(F(X,F,P) \)
3. \(s_3 \) peut être un élément de l’ensemble :
 - \(X \)
 - \(\forall \)
 - \(\exists \)
 - \(
\)
 - \(0 \)
 - \(1 \)
 - \(2 \)
 - \(3 \)
 - \(P \)
 - \(F(X,F,P) \)
4. \(s_4 \) peut être un élément de l’ensemble :
 - \(X \)
 - \(\forall \)
 - \(\exists \)
 - \(
\)
 - \(0 \)
 - \(1 \)
 - \(2 \)
 - \(3 \)
 - \(P \)
 - \(F(X,F,P) \)
5. \(s_5 \) peut être un élément de l’ensemble :
 - \(X \)
 - \(\forall \)
 - \(\exists \)
 - \(
\)
 - \(0 \)
 - \(1 \)
 - \(2 \)
 - \(3 \)
 - \(P \)
 - \(F(X,F,P) \)
6. \(s_6 \) peut être un élément de l’ensemble :
 - \(X \)
 - \(\forall \)
 - \(\exists \)
 - \(
\)
 - \(0 \)
 - \(1 \)
 - \(2 \)
 - \(3 \)
 - \(P \)
 - \(F(X,F,P) \)
7. \(s_7 \) peut être un élément de l’ensemble :
 - \(X \)
 - \(\forall \)
 - \(\exists \)
 - \(
\)
 - \(0 \)
 - \(1 \)
 - \(2 \)
 - \(3 \)
 - \(P \)
 - \(F(X,F,P) \)
8. cocher les termes qui apparaissent dans la formule \(F_1 \) :
 - \(s_1(s_2,s_3(s_4(s_5,s_6))) \)
 - \(s_2 \)
 - \(s_3(s_4(s_5,s_6)) \)
 - \(s_4(s_5) \)
 - \(s_5 \)
 - \(s_6 \)
 - \(s_7 \)
9. cocher les formules atomiques qui apparaissent dans la formule \(F_1 \) :
 - \(s_1(s_2,s_3(s_4(s_5,s_6))) \)
 - \(s_2 \)
 - \(s_3(s_4(s_5,s_6)) \)
 - \(s_4(s_5) \)
 - \(s_5 \)
 - \(s_6 \)
 - \(s_7 \)
10. \(\forall s \ (s_1(s_2,s_3(s_4(s_5,s_6)) \Rightarrow s_7) \) peut être une formule de \(F(X,F,P) \) lorsque :
 - \(s = s_1 \)
 - \(s = s_2 \)
 - \(s = s_3 \)
 - \(s = s_4 \)
 - \(s = s_5 \)
 - \(s = s_6 \)
 - \(s = s_7 \)
On considère à présent la formule \(F_2 = \exists y ((\forall y p(x,y)) \land \forall x p(x,z)) \).
11. cocher les variables appartenant à \(\text{Free}(F_2) : \)
 - \(x \)
 - \(y \)
 - \(z \)
12. cocher les formules qui correspondent à une clôture universelle de \(F_2 : \)
 - \(\forall x \forall z \exists y (((\forall y p(x,y)) \Rightarrow q(f(y))) \land \forall x p(x,z)) \)
 - \(\forall x \forall z \exists y (((\forall y p(x,y)) \Rightarrow \forall y q(f(y)) \land \forall x p(x,z)) \)
 - \(\forall z \exists y (((\forall y p(x,y)) \Rightarrow q(f(y))) \land \forall x p(x,z)) \)
 - \(\forall z \exists y (((\forall y p(x,y)) \Rightarrow \forall y q(f(y)) \land \forall x p(x,z)) \)
13. cocher les formules ayant la même signification (i.e. logiquement équivalente) que \(F_2 : \)
 - \(\exists y (((\forall z p(x,z)) \Rightarrow q(f(y))) \land \forall x p(x,z)) \)
 - \(\exists y (((\forall z p(x,z)) \Rightarrow q(f(y))) \land \forall x p(x,z)) \)
 - \(\exists y (((\forall y p(x,y)) \Rightarrow q(f(y))) \land \forall x p(x,z)) \)
 - \(\exists x_1 (((\forall x_2 p(x,x_2) \Rightarrow q(f(x_1))) \land \forall x_3 p(x_3,z)) \)

Examen partiel – 12 Novembre 2019
Durée 1h30

Téléphones, calculettes et ordinateurs interdits. Le seul document autorisé est le formulaire des équivalences sur les expressions booléennes et des règles de la déduction naturelle. Inscrire votre nom et votre numéro de groupe de TD sur votre copie et sur le QCM à rendre.
Exercice 2 (8+12=20 points)
Avec les règles de la déduction naturelle prouver les deux formules ci-dessous (on pourra utiliser les règles dérivées du formulaire).

\[(B \Rightarrow A) \Rightarrow ((A \Rightarrow B) \Rightarrow (\neg A \Rightarrow \neg B))\]
\[=((A \Rightarrow B) \Rightarrow (\neg A \Rightarrow \neg B)) \Rightarrow (B \Rightarrow A)\]

Exercice 3 (1+2+5+2=10 points)
1. Soient \(F_1\) et \(F_2\) deux formules de \(\mathbb{I}_0(F, P)\). Donner la définition mathématique de \(F_1 \equiv F_2\).
2. Soit \(F\) la formule \((A \Rightarrow B) \Rightarrow (\neg A \Rightarrow \neg B)\).
 (a) Etant donnée une structure \(M\), calculer l’expression booléenne \([F]_M\) en fonction de \(I_M(A)\) et \(I_M(B)\) (sans effectuer de simplification).
 (b) En utilisant un raisonnement équationnel, simplifier l’expression booléenne \([F]_M\) (indiquer à chaque étape le nom de l’équivalence utilisée). En déduire que \(F \equiv B \Rightarrow A\).
 (c) La formule \(F\) est-elle satisfiable ? est-elle valide ? (justifier)

Exercice 4 (1+2+(1+5)+(3+3)=15 points)
Soit \(F = \mathcal{F}_0 \cup \mathcal{F}_2\) un ensemble de symboles de fonction avec \(\mathcal{F}_0 = \{a, b\}\) et \(\mathcal{F}_2 = \{r, s\}\).

1. Particulariser la définition de l’ensemble de termes \(\mathcal{T}_0(F)\) pour l’ensemble \(F = \{a, b, r, s\}\).
2. Donner une définition inductive du nombre \(\text{nb}_a(t)\) d’occurrences du symbole \(a\) dans un terme \(t \in \mathcal{T}_0(F)\).
3. On définit une structure \(M_1\) dont le domaine d’interprétation est l’ensemble \(\mathbb{Z}\) des entiers relatifs comme suit :
\[a_{M_1} = 2 \quad b_{M_1} = 0 \quad r_{M_1} : \mathbb{Z} \times \mathbb{Z} \rightarrow \mathbb{Z} \quad s_{M_1} : \mathbb{Z} \times \mathbb{Z} \rightarrow \mathbb{Z}\]
\[r_{M_1}(n_1, n_2) = n_1 + n_2 \quad s_{M_1}(n_1, n_2) = n_1 - n_2\]
 (a) Calculer \([s(s(b, a), r(a, b))]_{M_1}\).
 (b) Montrer par induction que pour tout terme \(t \in \mathcal{T}_0(F)\), il existe un entier \(z \in \mathbb{Z}\) tel que \([t]_{M_1} = 2 \times z\).
4. Soit \(p\) un symbole de prédicat d’arité 2 et \(F\) la formule \(p(b, s(a, r(b, a))) \land p(s(b, b), a)\).
 (a) Définir une structure \(M_2\) telle que \([F]_{M_2} = 1\). (justifier)
 (b) Définir une structure \(M_3\) telle que \([F]_{M_3} = 0\). (justifier)
Corrigé de l'examen partiel du 12/11/2020

- Corrigé de l'exercice 1.

Les arbres de syntaxe abstraite des formules F_1 et F_2 sont (les occurrences de variable libre sont encadrées sur l'arbre représentant F_2, les autres occurrences sont liées):

1. s_1 peut être un élément de l'ensemble :
 $\Box X \quad \Box F_0 \quad \Box F_1 \quad \Box F_2 \quad \Box F_3 \quad \Box P_0 \quad \Box P_1 \quad \Box P_2 \quad \Box P_3 \quad \Box F(X,F,P)$

2. s_2 peut être un élément de l'ensemble :
 $\Box X \quad \Box F_0 \quad \Box F_1 \quad \Box F_2 \quad \Box F_3 \quad \Box P_0 \quad \Box P_1 \quad \Box P_2 \quad \Box P_3 \quad \Box F(X,F,P)$

3. s_3 peut être un élément de l'ensemble :
 $\Box X \quad \Box F_0 \quad \Box F_1 \quad \Box F_2 \quad \Box F_3 \quad \Box P_0 \quad \Box P_1 \quad \Box P_2 \quad \Box P_3 \quad \Box F(X,F,P)$

4. s_4 peut être un élément de l'ensemble :
 $\Box X \quad \Box F_0 \quad \Box F_1 \quad \Box F_2 \quad \Box F_3 \quad \Box P_0 \quad \Box P_1 \quad \Box P_2 \quad \Box P_3 \quad \Box F(X,F,P)$

5. s_5 peut être un élément de l'ensemble :
 $\Box X \quad \Box F_0 \quad \Box F_1 \quad \Box F_2 \quad \Box F_3 \quad \Box P_0 \quad \Box P_1 \quad \Box P_2 \quad \Box P_3 \quad \Box F(X,F,P)$

6. s_6 peut être un élément de l'ensemble :
 $\Box X \quad \Box F_0 \quad \Box F_1 \quad \Box F_2 \quad \Box F_3 \quad \Box P_0 \quad \Box P_1 \quad \Box P_2 \quad \Box P_3 \quad \Box F(X,F,P)$

7. s_7 peut être un élément de l'ensemble :
 $\Box X \quad \Box F_0 \quad \Box F_1 \quad \Box F_2 \quad \Box F_3 \quad \Box P_0 \quad \Box P_1 \quad \Box P_2 \quad \Box P_3 \quad \Box F(X,F,P)$

8. cocher les termes qui apparaissent dans la formule F_1 :
 $\Box s_1(s_2,s_3(s_4(s_5),s_6)) \quad \Box s_2 \quad \Box s_3(s_4(s_5),s_6) \quad \Box s_4(s_5) \quad \Box s_5 \quad \Box s_6 \quad \Box s_7$

9. cocher les formules atomiques qui apparaissent dans la formule F_1 :
 $\Box s_1(s_2,s_3(s_4(s_5),s_6)) \quad \Box s_2 \quad \Box s_3(s_4(s_5),s_6) \quad \Box s_4(s_5) \quad \Box s_5 \quad \Box s_6 \quad \Box s_7$

10. $\forall s \ (s_1(s_2,s_3(s_4(s_5),s_6)) \Rightarrow s_7)$ peut être une formule de $F(X,F,P)$ lorsque :
 $\Box s = s_1 \quad \Box s = s_2 \quad \Box s = s_3 \quad \Box s = s_4 \quad \Box s = s_5 \quad \Box s = s_6 \quad \Box s = s_7$

11. cocher les variables appartenant à Free(F_2) :
 $\Box x \quad \Box y \quad \Box z$

12. cocher les formules qui correspondent à une clôture universelle de F_2 :
 $\Box \forall x \exists y (((\forall y p(x,y)) \Rightarrow q(f(y))) \land \forall x p(x,z)) \quad \Box \forall x \exists y (((\forall y p(x,y)) \Rightarrow q(f(y))) \land \forall x p(x,z))$
 $\Box \forall x \exists y (((\forall y p(x,y)) \Rightarrow q(f(y))) \land \forall x p(x,z))$
13. cocher les formules ayant la même signification (i.e. logiquement équivalente) que F_2 :
- $\exists y \ (\forall z \ p(x, z)) \Rightarrow q(f(y)) \wedge \forall x \ p(x, z)$
- $\exists y \ (\forall y \ p(z, y)) \Rightarrow q(f(y)) \wedge \forall x \ p(x, z)$
- $\exists y \ (\forall y \ p(x, y)) \Rightarrow q(f(y))$
- $\exists x_1 \ ((\forall y z \ p(x, x_2)) \Rightarrow q(f(x_1))) \wedge \forall x_3 \ p(x_3, z)$

▶ Corrigé de l’exercice 2.

(1) montrons $(B \Rightarrow A) \Rightarrow ((A \Rightarrow B) \Rightarrow (\neg A \Rightarrow \neg B))$
(2) supposons $h_1 : B \Rightarrow A, h_2 : A \Rightarrow B, h_3 : \neg A, \neg B$
(3) supposons $h_4 : B$, montrons false
(4) montrons $\neg A$
(5) CQFD (Ax avec h_3)
(6) montrons A
(7) CQFD (Ax avec h_1)
(8) CQFD (Ax avec h_2)
(9) supposons $h_4 : A$, montrons B
(10) CQFD (Ax avec h_2)

▶ Corrigé de l’exercice 3.

(1) $F_1 \models F_2$ si et seulement si pour toute structure M, $[F_1]^M = [F_2]^M$.

(2) $F = (A \Rightarrow B) \Rightarrow (\neg A \Rightarrow \neg B)$

(a)

$$= \overline{M(A)} + I_M(B) + ([\neg A]^M + [B]^M) = \overline{I_M(A)} + I_M(B) + (\overline{I_M(A)} + \overline{I_M(B)})$$

(b) En posant $x = I_M(A)$ et $y = I_M(B)$, on a :

$$[F]^M = \overline{x + y} + (\overline{x + y}) \equiv E^{1.2} \overline{x + y} + (x + y)$$

$$\equiv E^{4.4} (x + y) + (\overline{x + y}) \equiv E^{1.2} (x + \overline{y}) + (x + \overline{y})$$

$$\equiv E^{3.4} \overline{x + y} + (x + \overline{y}) \equiv E^{2.4} ((x + \overline{y}) + x) \cdot ((x + \overline{y}) + y)$$

$$\equiv E^{3.1} ((\overline{y} + x) + x) \cdot ((\overline{y} + x) + \overline{y})$$

$$\equiv E^{3.5} (x + x) \cdot (x + y) \equiv E^{2.5} (x + y) \cdot (x + \overline{y})$$

On a donc bien $F \models B \Rightarrow A$.

4
(c) F est satisfiable puisque pour toute structure M_1 telle que $I_{M_1}(A) = 1$ on a $[F]_{M_1} = \overline{1} + 1 = 1$ mais F n’est pas valide puisque pour une structure M_2 telle que $I_{M_2}(A) = 0$ et $I_{M_2}(B) = 1$ on a $[F]_{M_2} = \overline{1} + \overline{0} = 0 + 0 = 0$.

Corrigé de l’exercice 4.

1. Définition inductive de $T_0(F)$:
 \begin{align*}
 a & \in T_0(F), b \in T_0(F).
 \end{align*}

 Si $t_1, t_2 \in T_0(F)$, alors $r(t_1, t_2) \in T_0(F)$.

 Si $t_1, t_2 \in T_0(F)$, alors $s(t_1, t_2) \in T_0(F)$.

2. Définition inductive du nombre $nb_a(t)$ d’occurrences du symbole a dans un terme $t \in T_0(F)$:

 $$nb_a(t) = \begin{cases}
 0 & \text{si } t = b \\
 1 & \text{si } t = a \\
 nb_a(t_1) + nb_a(t_2) & \text{si } t = r(t_1, t_2) \\
 nb_a(t_1) + nb_a(t_2) & \text{si } t = s(t_1, t_2)
 \end{cases}$$

3. a) On définit la structure F

 $$(3.a) \quad [s(s(b, a), r(a, b))]_{M_1} = s_{M_1}(s_{M_1}(b_{M_1}, a_{M_1}), r_{M_1}(a_{M_1}, b_{M_1})) = s_{M_1}(s_{M_1}(0, 2), r_{M_1}(2, 0)) = s_{M_1}(-2, 2) = -4$$

3. b) Raisonnement par induction sur t.

 B) Si $t = a$, alors $[a]_{M_1} = 2 = 2 \times 1$.

 Si $t = b$, alors $[b]_{M_1} = 0 = 2 \times 0$.

 1. Si $t = r(t_1, t_2)$, alors :

 $[r(t_1, t_2)]_{M_1} = r_{M_1}([t_1]_{M_1}, [t_2]_{M_1})$

 $= r_{M_1}(2 \times z_1, 2 \times z_2)$ par hyp. d’induction

 $= (2 \times z_1) + (2 \times z_2)$ par définition

 $= 2 \times (z_1 + z_2)$ $z_1 + z_2 \in \mathbb{Z}$

 4. a) On définit la structure M_2 dont le domaine est l’ensemble des entiers relatifs $|M_2| = \mathbb{Z}$ et telle que :

 $$a_{M_2} = 2 \quad r_{M_2}(n_1, n_2) = n_1 - n_2 \quad s_{M_2}(n_1, n_2) = n_1 + n_2 \quad p_{M_2} \subseteq \mathbb{Z}$$

 On a $[F]_{M_2} = I_{M_2}(p(b, s(a, r(b, a)))) \cdot I_{M_2}(p(s(b, b), a)) = 1 \cdot 1 = 1$ car :

 (i) $b_{M_2} = 1$ et $[s(a, r(b, a))]_{M_2} = s_{M_2}(a_{M_2}, r_{M_2}(b_{M_2}, a_{M_2})) = s_{M_2}(2, -1) = 1$ et donc $I_{M_2}(p(b, s(a, r(b, a)))) = 1$ puisque $(1, 1) \in p_{M_2}$.

 (ii) $[s(b, b)]_{M_2} = s_{M_2}(b_{M_2}, b_{M_2}) = s_{M_2}(1, 1) = 2$ et $a_{M_2} = 2$ et donc $I_{M_2}(p(s(b, b), a)) = 1$ puisque $(2, 2) \in p_{M_2}$.

4. b) On définit la structure M_3 dont le domaine est l’ensemble des entiers relatifs $|M_3| = \mathbb{Z}$ et telle que :

 $$a_{M_3} = 2 \quad r_{M_3}(n_1, n_2) = n_1 - n_2 \quad s_{M_3}(n_1, n_2) = n_1 + n_2 \quad p_{M_3} \subseteq \mathbb{Z}$$

 On a $[F]_{M_3} = I_{M_3}(p(b, s(a, r(b, a)))) \cdot I_{M_3}(p(s(b, b), a)) = 1 \cdot 0 = 0$ car :

 (i) $b_{M_3} = 0$ et $[s(a, r(b, a))]_{M_3} = s_{M_3}(a_{M_3}, r_{M_3}(b_{M_3}, a_{M_3})) = s_{M_3}(2, -2) = 0$ et donc $I_{M_3}(p(b, s(a, r(b, a)))) = 1$ puisque $(0, 0) \in p_{M_3}$.

 (ii) $[s(b, b)]_{M_3} = s_{M_3}(b_{M_3}, b_{M_3}) = s_{M_3}(0, 0) = 0$ et $a_{M_3} = 2$ et donc $I_{M_3}(p(s(b, b), a)) = 0$ puisque $(0, 2) \notin p_{M_3}$.

5